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Nicotine Addiction Causes Unique Detrimental Effects
on Women’s Brains

Ami P. Raval, PhD

ABSTRACT. Nicotine addiction produces diverse physiological effects common to both men and
women because of activation of the nicotinic acetylcholine receptors. In addition to these effects, nicotine
reduces circulating estrogen (the female sex hormone) levels and leads to early onset of menopause
in women. Nicotine’s effect on estrogen metabolism has potential far-reaching consequences because
endogenous circulating estrogen helps prevent cerebrovascular diseases in premenopausal women. In
this article, the author presents a survey of literature showing that nicotine addiction causes unique
deleterious effects in women’s brains by inhibiting estrogen signaling, which makes the brain more
susceptible to ischemic brain damage.
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INTRODUCTION

The increase in women’s smoking prevalence
is a major public health concern in the United
States. As per centers for disease control and pre-
vention, currently 22 million (22%) women age
18 and older and approximately 1.5 million ado-
lescent girls smoke cigarettes. The primary rea-
son people consume tobacco products is because
of nicotine addiction.1 Although the detrimental
effects of smoking-derived nicotine on health are
well-established, giving up a smoking habit is
more difficult for women than for men.2,3 Some
of the possible reasons for difficulty in quitting
include womens’ greater concern about weight
gain after cessation, difficulty with negative
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mood, and a greater need for social support to
stop smoking.2,4,5 The current perception among
women who smoke is that tobacco-related can-
cers are their principal threat to health. How-
ever, according to statistics presented by Amer-
ican Heart Association, nearly twice as many
women in the United States die of cardiovascu-
lar and cerebrovascular disease as from all forms
of cancer, including breast cancer.6 In the cur-
rent article, I briefly review gender differences
in nicotine metabolism and the general delete-
rious effects of nicotine on health. The author
then discusses the effects of nicotine addiction
specific to women and the need to understand
the consequences of nicotine addiction unique
to women to treat or mitigate this epidemic.
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GENDER DIFFERENCES IN
NICOTINE METABOLISM

Cigarette smoke is a complex chemical mix-
ture containing 4,800 compounds.7−9 Nicotine
is the major toxic and addictive agent in tobacco
smoke responsible for the elevated risk of cardio-
vascular disease and sudden coronary death as-
sociated with smoking.7,10,11 In general, nicotine
is rapidly absorbed by the lungs and distributed
to body tissues during smoking. Nicotine plasma
concentration in smokers ranges between 10 pM
and 10 μM.12,13 Nicotine is quickly metabolized
by the liver through a set of biochemical reac-
tions that involve cytochrome p450 and aldehyde
oxidase enzymes.12,14−16 Approximately 80% is
converted to cotinine and the rest to a variety of
other metabolites.13 Cotinine has a plasma half-
life of 16 hours, much longer than that of nicotine
(2 hours). Women’s hormones influence nicotine
metabolism.17 Nicotine and cotinine metabolize
faster in women than in men, and even faster in
women taking oral contraceptives than in those
who are not.12,17,18 The rate women metabolize
nicotine influences smoking behavior, causing
more dependence and increasing the associated
risks.

PRONOUNCED DETRIMENTAL
EFFECTS OF NICOTINE IN WOMEN

AS COMPARED WITH MEN

Nicotine adversely affects cerebral blood
flow and blood–brain barrier function, induces
peripheral thrombus formation, and alters cere-
brovascular endothelial cell function.19−25 Nico-
tine is also considered a procoagulant and proin-
flammatory because it induces massive leuko-
cyte infiltration and up-regulates other proin-
flammatory factors.26 Nicotine is also known
to modify lipid metabolism in animals at con-
centrations similar to those found in a smoker’s
blood.27 In addition to these general deleterious
effects of nicotine, in women nicotine addiction
modulates estrogen metabolism, reduces circu-
lating estrogen levels, disturbs normal periodic-
ity of the menstrual cycle, and ultimately leads

to early onset of menopause.28−36 However,
whether this systemic effect of nicotine on circu-
lating estrogen is the sole culprit or there are any
direct effects of nicotine on brain estrogen sig-
naling is not yet understood. Importantly, a syn-
ergistic detrimental effect exists between the use
of oral contraceptives and those undergoing hor-
mone replacement therapy (for post-menopausal
women) and smoking/nicotine dependence on
the risk of cardiovascular and cerebrovascular
diseases, but the mechanism is unknown.37−41

In addition, an unanswered question in the
field of nicotine addiction is where synergis-
tic deleterious effects of nicotine plus extra-
ovarian hormone are different from nicotine
addiction.

INHIBITORY EFFECTS OF NICOTINE
ON ESTROGEN BIOSYNTHESIS IN

THE BRAIN

The brain is an important target for ovar-
ian hormones and the site of estrogen synthe-
sis in vertebrates.42−44 The brain also expresses
several steroidogenic enzymes, including aro-
matase, which catalyzes the conversion of an-
drogens into estrogens (Figure 1) and is the
most crucial step in estrogen biosynthesis.43

The presence of aromatase in the hippocam-
pus indicates the de novo synthesis of estra-
diol locally.43 Regarding cell types in the hip-
pocampus, studies have demonstrated gender
differences in the expression and activity of
aromatase in astrocytes.45 It has been demon-
strated that the astrocytes from women’s brains
produce more estradiol than the astrocytes
from men’s brains.46,47 These newly synthe-
sized estrogens regulate estrogen receptors for
consequent para/autocrine estrogen action in
the hippocampus,48 maintain the hippocampal
synapses,49 and modulate interneuronal com-
munication by acting in a paracrine manner.48

It has been demonstrated that aromatase ex-
pression is induced after brain injury and is
neuroprotective.45,50,51 The gender difference
in availability of aromatase in astrocytes also
reflects the resistance of women’s astrocytes
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FIGURE 1. Aromatase enzyme converts testosterone to estradiol.
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to oxygen-glucose deprivation.46,47 Neuronal
damage owing to mechanical or ischemic in-
jury is enhanced in transgenic mice or after
pharmacological inhibition of aromatase.45,52

These findings underscore the fact that local
de novo synthesis and release of estrogen reg-
ulate routine neuronal activities and are cru-
cial for protection of neurons against stress.53,54

Nicotine directly inhibits aromatase activity.55

More definite evidence is presented by a re-
cent study using positron emission tomography
that demonstrated that nicotine directly inter-
acts in vivo with primate brain aromatase in
regions involved in mood, aggression, and sex-
ual behavior.56 Because brain aromatase is im-
plicated in neuronal survival, cognition, mood,
aggression, and sexual behavior,57 its inhibition
by nicotine reveals a novel additional mecha-
nism through which nicotine and cigarette smok-
ing can exert their effects on behavior and
neurophysiology.56

NICOTINE ADDICTION AND
INCREASED POST-ISCHEMIC BRAIN

DAMAGE IN WOMEN

To date, the presentation and outcome
of several neuropathological conditions (e.g.,
Alzheimer’s disease, Huntington’s disease, mul-
tiple sclerosis, traumatic brain injury, autism,
schizophrenia, mood disorders, and stroke, in-
cluding cerebral ischemia) for which gender dif-
ferences have been identified.58,59 Although gen-
der differences of the brain might be based on

genetic constitution,60−62 the role of sex hor-
mones during development of neural tissue can-
not be denied in observed gender differences in
the neuropathological conditions.63 For exam-
ple, female are less susceptible to post-ischemic
brain damage in experimental models, rodent as
well as in humans.64−67 This natural neuropro-
tection against ischemic injury is considered to
be due to the effects of circulating ovarian hor-
mones that are lost after ovariectomy or repro-
ductive senescence.66,68 Exogenous administra-
tion of estrogen to ovariectomized (ovarian hor-
mone deprivation) rats has been demonstrated to
improve neuronal survival after ischemia, thus
attributing a protective role to estrogen against
ischemia.69−73 In female rodents, the fluctuation
in ovarian hormonal levels during the estrous cy-
cle influences the response of brain to patholog-
ical insults.58 It has been demonstrated that the
neurotoxic effect of kainic acid on hippocampal
neurons in female rats is different depending on
the day of the estrous cycle on which the neu-
rotoxin was injected.74 This study demonstrated
that the injection of neurotoxin on the morning
of estrus (1 day after estradiol peak) resulted in
no neuronal loss but significant loss in hilar neu-
rons was noted when neurotoxin was given at
the early proestrus, specifically before the peak
of estradiol.74

In this context, the author demonstrated
that the higher serum levels of endogenous
17β-estradiol during the proestrus and estrus
stages of the estrous cycle protected the brain
against global cerebral ischemia in normally
cycling female rats.75 Interestingly, neuropro-
tective effects of endogenous or exogenous
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FIGURE 2. (A) Representative histological images in the hippocampal CA1 region 7 days after
induction of cerebral ischemia: (a) cycling rat, (b) nicotine treated cycling rat, (c) ovariectomized, (d)
nicotine treatment ovariectomized, (e) ovariectomized plus 17β-estradiol treated, and (f) nicotine
exposed ovariectomized plus 17β-estradiol treated group. Arrow shows normal neurons (Scale
bar = 20 μm). (B) Presence of normal neurons in the CA1 region (which includes the middle,
medial, and lateral subregion) of rat hippocampus 7 days after induction of cerebral ischemia in
different experimental groups. *p < 0.05 as against saline treated group. (Reproduced from Raval
et al., 2009, Neuroscience letters, with permission from Elsevier).

estrogen in nicotine-exposed female rats could
not be reproduced (Figure 2). In this study,
chronic nicotine exposure abrogated endoge-
nous estrogen-conferred neuroprotection in the
CA1 region of the hippocampus against cere-
bral ischemia in normally cycling female rats
was demonstrated.76 Furthermore, the authors
demonstrated that a bolus of 17β-estradiol
to nicotine-exposed ovariectomized rats failed
to rescue CA1 neurons following cerebral
ischemia.76 These results clearly suggest that
nicotine inhibited the beneficial effects of es-

trogen on cerebrovascular heath, the mechanism
of which is not identified yet.

Estrogen is a multi-factorial agent span-
ning a broad spectrum of anti-oxidant,77−79

anti-excitatory,80−82 and anti-apoptotic
mechanisms.83−85 Apart from direct ge-
nomic action, estrogen has been suggested to
activate rapid intracellular signaling pathways
that indirectly affect genomic activity via
other transcription regulators such as cyclic
adenosine monophosphate (cAMP) response
element binding protein.86−88 These effects of
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FIGURE 3. Schematic diagrams depicting that the nicotine inhibits estrogen-signaling and exacer-
bates post-ischemic damage in women. It has been demonstrated that the estrogen mediated ac-
tivation of cyclic-AMP response element binding protein occurs via calcium–calmodulin-dependent
protein kinase, mitogen-activated protein kinase, and protein kinase B (Akt) pathways.75,85

estrogen are triggered by secondary messenger
calcium;89 calcium in turn activates numerous
kinases like calcium–calmodulin-dependent
protein kinase, protein kinase A, protein kinase
c, mitogen-activated protein kinase, or phospho-
inositide 3-kinase.88,90,91 Studies demonstrated
that estrogen receptors facilitate L-type voltage-
gated Ca2+ channels in the hippocampal
neurons.88,89 It has been demonstrated that
17β-estradiol rescues the hippocampal CA1
region from subsequent ischemic damage via
Ca+2 → mitogen-activated protein kinase and
calcium–calmodulin-dependent protein kinase
→ cyclic-AMP response element binding
protein activation.71,72,75,85,92 These rapid,
diverse, non-genomic actions of estrogen are
mediated via estrogen receptors.

The literature suggests there are four dis-
tinct receptors for estrogen: two ligand-activated
receptors (ER-α and ER-β), one G protein-
coupled estrogen receptor, and one putative re-
ceptor ER-X.93−95 In hippocampus, ER-β reg-
ulates estrogen-mediated cyclic-AMP response
element binding protein phosphorylation.96 A
recent study demonstrated that the reduced avail-
ability of ER-β following nicotine exposure

subsequently decreased neuronal survival after
cerebral ischemia in nicotine-treated normally
cycling or estrogen-treated ovariectomized fe-
male rats compared with untreated groups (Fig-
ure 3).76,97 These studies showed that ER-β is a
key mediator of beneficial effects of estrogen on
neurovascular parenchyma and nicotine depen-
dence resulted in loss of ER-β signaling. In sup-
port, Gustafsson, a pioneer in the area of estrogen
receptor signaling, emphasized the role of ER-β
as a target for candidate diseases and suggested
to explore ER-β as a marker for clinical decision
making and treatment.95 A recent study from
Noppens et al. demonstrated that estradiol treat-
ment after cardiac arrest and cardiopulmonary
resuscitation was neuroprotective and mediated
through ER-β.98 On the other hand, studies
from other groups demonstrate that estradiol at-
tenuates injury require ER-α-activation.72,99,100

Estrogen-mediated vascular protection after is-
chemia is achieved via ER-α, which increased
vascular expression of angiopoietin-1 and stim-
ulated angiogenesis in the brain.101,102 This con-
tradiction suggests that both ligand-activated
estrogen receptors (α and β) are crucial
for neuronal survival and work via different
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mechanisms that require in-depth investigation.
Despite the presence of ER-β in cerebral arter-
ies, information about the role of ER-β in the
cerebral vasculature is limited.103,104 A previ-
ous study suggests a prominent role for ER-β in
post-ischemic neuroprotection and not for ER-
α,76 but a role for ER-α cannot be totally ex-
cluded, especially because ER-α is present in
both the smooth muscle and endothelial cell lay-
ers of cerebral blood vessels.105−107

Finally, most previous studies of the mecha-
nisms of nicotine dependence were performed
on male experimental animals and were focused
on identifing effects of nicotine on its receptors.
Here, the author presented a review of the liter-
ature on nicotine-related consequences unique
to women. Therefore, a better understanding
of the consequences of nicotine dependence is
sorely required to develop alternative therapies
based on women’s physiology to overcome the
deleterious effects of nicotine in women. Im-
portantly, the sex-specific effects of nicotine on
women’s brains discussed in this review empha-
size a greater need to develop a sex-based phar-
macological approach to overcome deleterious
effects of nicotine addiction.

CONCLUSIONS

Under normal conditions, women suffer less
ischemic brain damage than do men. This nat-
ural brain protection against ischemic injury
in women is considered to be due to the ef-
fects of circulating ovarian hormones that are
lost after either menopause or removal of the
ovaries. The results of our research indicate that
nicotine addiction makes female more suscep-
tible to ischemic brain damage.76,97 More im-
portantly, women taking oral contraception who
are smokers increase their risk for cardiovascular
and cerebrovascular events by 30-fold compared
with women who are not smoking or using oral
contraceptives.40,41 Therefore, it is critical to un-
derstand the effects of nicotine on hippocampal
damage in women during their normal reproduc-
tive phase and while taking oral contraceptives or
undergoing hormone-estrogen replacement ther-
apy. Finally, smoking dependence poses unique
and severe risks for nicotine-attributed chronic

cerebrovascular diseases in women, and a better
understanding of the consequences of nicotine
addiction unique to women is sorely required to
treat or mitigate this epidemic.
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